A Stanford-led team has developed a new electrolysis system to split seawater in hydrogen and oxygen. Their findings are published in an open-access paper in the Proceedings of the National Academy of Sciences . Existing water-splitting methods rely on highly purified water—a precious resource and costly to produce. Hongjie Dai and his research lab at Stanford University have developed a prototype that can generate hydrogen fuel from seawater. (Image credit: Courtesy of H. Dai, Yun Kuang, Michael Kenney) Electrolysis of water to generate hydrogen fuel is an attractive renewable energy storage technology. However, grid-scale freshwater electrolysis would put a heavy strain on vital water resources. Developing cheap electrocatalysts and electrodes that can sustain seawater splitting without chloride corrosion could address the water scarcity issue. Here we present a multilayer anode consisting of a nickel–iron hydroxide (NiFe) electrocatalyst layer uniformly coated on a nickel sulfide (NiSx) layer formed on porous […]